Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Thorac Imaging ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37884394

RESUMO

PURPOSE: To study the performance of artificial intelligence (AI) for detecting pleural pathology on chest radiographs (CXRs) using computed tomography as ground truth. PATIENTS AND METHODS: Retrospective study of subjects undergoing CXR in various clinical settings. Computed tomography obtained within 24 hours of the CXR was used to volumetrically quantify pleural effusions (PEfs) and pneumothoraxes (Ptxs). CXR was evaluated by AI software (INSIGHT CXR; Lunit) and by 3 second-year radiology residents, followed by AI-assisted reassessment after a 3-month washout period. We used the area under the receiver operating characteristics curve (AUROC) to assess AI versus residents' performance and mixed-model analyses to investigate differences in reading time and interreader concordance. RESULTS: There were 96 control subjects, 165 with PEf, and 101 with Ptx. AI-AUROC was noninferior to aggregate resident-AUROC for PEf (0.82 vs 0.86, P < 0.001) and Ptx (0.80 vs 0.84, P = 0.001) detection. AI-assisted resident-AUROC was higher but not significantly different from the baseline. AI-assisted reading time was reduced by 49% (157 vs 80 s per case, P = 0.009), and Fleiss kappa for Ptx detection increased from 0.70 to 0.78 (P = 0.003). AI decreased detection error for PEf (odds ratio = 0.74, P = 0.024) and Ptx (odds ratio = 0.39, P < 0.001). CONCLUSION: Current AI technology for the detection of PEf and Ptx on CXR was noninferior to second-year resident performance and could help decrease reading time and detection error.

2.
Radiol Cardiothorac Imaging ; 5(4): e230022, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37693194

RESUMO

Purpose: To perform a living systematic review and meta-analysis of randomized controlled trials comparing the effectiveness of coronary CT angiography (CCTA) and standard of care (SOC) in the evaluation of acute chest pain (ACP). Materials and Methods: Multiple electronic databases were systematically searched, with the most recent search conducted on October 31, 2022. Studies were stratified into two groups according to the pretest probability for acute coronary syndrome (group 1 with predominantly low-to-intermediate risk vs group 2 with high risk). A meta-regression analysis was also conducted using participant risk, type of SOC used, and the use or nonuse of high-sensitivity troponins as independent variables. Results: The final analysis included 22 randomized controlled trials (9379 total participants; 4956 assigned to CCTA arms and 4423 to SOC arms). There was a 14% reduction in the length of stay and a 17% reduction in immediate costs for the CCTA arm compared with the SOC arm. In group 1, the length of stay was 17% shorter and costs were 21% lower using CCTA. There was no evidence of differences in referrals to invasive coronary angiography, myocardial infarction, mortality, rate of hospitalization, further stress testing, or readmissions between CCTA and SOC arms. There were more revascularizations (relative risk, 1.45) and medication changes (relative risk, 1.33) in participants with low-to-intermediate acute coronary syndrome risk and increased radiation exposure in high-risk participants (mean difference, 7.24 mSv) in the CCTA arm compared with the SOC arm. The meta-regression analysis found significant differences between CCTA and SOC arms for rate of hospitalization, further stress testing, and medication changes depending on the type of SOC (P < .05). Conclusion: The results support the use of CCTA as a safe, rapid, and less expensive in the short term strategy to exclude acute coronary syndrome in low- to intermediate-risk patients presenting with acute chest pain.Keywords: Acute Coronary Syndrome, Chest Pain, Emergency Department, Coronary Computed Tomography, Usual Care Supplemental material is available for this article. Published under a CC BY 4.0 license.

3.
Tomography ; 9(4): 1538-1550, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37624116

RESUMO

OBJECTIVES: To evaluate if dual-energy CT (DECT) pulmonary angiography (CTPA) can detect anemia with the aid of machine learning. METHODS: Inclusion of 100 patients (mean age ± SD, 51.3 ± 14.8 years; male-to-female ratio, 42/58) who underwent DECT CTPA and hemoglobin (Hb) analysis within 24 h, including 50 cases with Hb below and 50 controls with Hb ≥ 12 g/dL. Blood pool attenuation was assessed on virtual noncontrast (VNC) images at eight locations. A classification model using extreme gradient-boosted trees was developed on a training set (n = 76) for differentiating cases from controls. The best model was evaluated in a separate test set (n = 24). RESULTS: Blood pool attenuation was significantly lower in cases than controls (p-values < 0.01), except in the right atrium (p = 0.06). The machine learning model had sensitivity, specificity, and accuracy of 83%, 92%, and 88%, respectively. Measurements at the descending aorta had the highest relative importance among all features; a threshold of 43 HU yielded sensitivity, specificity, and accuracy of 68%, 76%, and 72%, respectively. CONCLUSION: VNC imaging and machine learning shows good diagnostic performance for detecting anemia on DECT CTPA.


Assuntos
Angiografia , Angiografia por Tomografia Computadorizada , Humanos , Estudos de Viabilidade , Aprendizado de Máquina
4.
Emerg Radiol ; 29(6): 1019-1031, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35945464

RESUMO

Due to a contrast shortage crisis resulting from the decreased supply of iodinated contrast agents, the American College of Radiology (ACR) has issued a guidance statement followed by memoranda from various hospitals to preserve and prioritize the limited supply of contrast. The vast majority of iodinated contrast is used by CT, with a minority used by vascular and intervention radiology, fluoroscopy, and other services. A direct consequence is a paradigm shift to large volume unenhanced CT scans being utilized for acute and post traumatic patients in EDs, an uncharted territory for most radiologists and trainees. This article provides radiological diagnostic guidance and a pictorial example through systematic review of common unenhanced CT findings in the acute setting.


Assuntos
Meios de Contraste , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Fluoroscopia , Tomografia Computadorizada de Feixe Cônico , Radiologistas
5.
Radiol Cardiothorac Imaging ; 4(3): e220101, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35833167

RESUMO

The impact of supply chain and supply chain logistics, including personnel directly and indirectly related to the movement of supplies, has come to light in a variety of industries since the global COVID-19 pandemic. Acutely, the experience with baby formula and iodinated contrast material exposes key vulnerabilities to supply chains. The rather sudden diminished availability of iodinated contrast material has forced health care systems to engage in more judicious use of product through catalyzing the adoption of behaviors that had been recommended and deemed reasonable prior to the shortage. The authors describe efforts at a large, academic safety net county health system to conserve iodinated contrast media by optimizing contrast media use in the CT department and changing ordering patterns of referring providers. Special attention is given to opportunities to conserve contrast material in cardiothoracic imaging, including low kV and dual-energy CT techniques. A values-based leadership philosophy and collaboration with key stakeholders facilitate effective response to the critical shortage and rapid deployment of iodinated contrast media conservation strategies. Last, while the single-supplier model is efficient and cost-effective, its application to critically necessary services such as health care must be questioned considering disruptions related to the COVID-19 pandemic. Keywords: CT, Intravenous Contrast Agents, CT-Spectral Imaging (Dual Energy) ©RSNA, 2022.

6.
AJR Am J Roentgenol ; 219(6): 895-902, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822644

RESUMO

BACKGROUND. Artificial intelligence (AI) algorithms have shown strong performance for detection of pulmonary embolism (PE) on CT examinations performed using a dedicated protocol for PE detection. AI performance is less well studied for detecting PE on examinations ordered for reasons other than suspected PE (i.e., incidental PE [iPE]). OBJECTIVE. The purpose of this study was to assess the diagnostic performance of an AI algorithm for detection of iPE on conventional contrast-enhanced chest CT examinations. METHODS. This retrospective study included 2555 patients (mean age, 53.2 ± 14.5 [SD] years; 1340 women, 1215 men) who underwent 3003 conventional contrast-enhanced chest CT examinations (i.e., not using pulmonary CTA protocols) between September 2019 and February 2020. A commercial AI algorithm was applied to the images to detect acute iPE. A vendor-supplied natural language processing (NLP) algorithm was applied to the clinical reports to identify examinations interpreted as positive for iPE. For all examinations that were positive by the AI-based image review or by NLP-based report review, a multireader adjudication process was implemented to establish a reference standard for iPE. Images were also reviewed to identify explanations of AI misclassifications. RESULTS. On the basis of the adjudication process, the frequency of iPE was 1.3% (40/3003). AI detected four iPEs missed by clinical reports, and clinical reports detected seven iPEs missed by AI. AI, compared with clinical reports, exhibited significantly lower PPV (86.8% vs 97.3%, p = .03) and specificity (99.8% vs 100.0%, p = .045). Differences in sensitivity (82.5% vs 90.0%, p = .37) and NPV (99.8% vs 99.9%, p = .36) were not significant. For AI, neither sensitivity nor specificity varied significantly in association with age, sex, patient status, or cancer-related clinical scenario (all p > .05). Explanations of false-positives by AI included metastatic lymph nodes and pulmonary venous filling defect, and explanations of false-negatives by AI included surgically altered anatomy and small-caliber subsegmental vessels. CONCLUSION. AI had high NPV and moderate PPV for iPE detection, detecting some iPEs missed by radiologists. CLINICAL IMPACT. Potential applications of the AI tool include serving as a second reader to help detect additional iPEs or as a worklist triage tool to allow earlier iPE detection and intervention. Various explanations of AI misclassifications may provide targets for model improvement.


Assuntos
Inteligência Artificial , Embolia Pulmonar , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Embolia Pulmonar/diagnóstico por imagem , Embolia Pulmonar/complicações , Tomografia Computadorizada por Raios X/métodos , Tórax
8.
Chest ; 160(4): 1492-1511, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33957099

RESUMO

BACKGROUND: e-Cigarette or vaping-induced lung injury (EVALI) causes a spectrum of CT lung injury patterns. Relative frequencies and associations with vaping behavior are unknown. RESEARCH QUESTION: What are the frequencies of imaging findings and CT patterns in EVALI and what is the relationship to vaping behavior? STUDY DESIGN AND METHODS: CT scans of 160 subjects with EVALI from 15 institutions were retrospectively reviewed. CT findings and patterns were defined and agreed on via consensus. The parenchymal organizing pneumonia (OP) pattern was defined as regional or diffuse ground-glass opacity (GGO) ± consolidation without centrilobular nodules (CNs). An airway-centered OP pattern was defined as diffuse CNs with little or no GGO, whereas a mixed OP pattern was a combination of the two. Other patterns included diffuse alveolar damage (DAD), acute eosinophilic-like pneumonia, and pulmonary hemorrhage. Cases were classified as atypical if they did not fit into a pattern. Imaging findings, pattern frequencies, and injury severity were correlated with substance vaped (marijuana derives [tetrahydrocannabinol] [THC] only, nicotine derivates only, and both), vaping frequency, regional geography, and state recreational THC legality. One-way analysis of variance, χ2 test, and multivariable analyses were used for statistical analysis. RESULTS: A total of 160 patients (79.4% men) with a mean age of 28.2 years (range, 15-68 years) with EVALI underwent CT scan. Seventy-seven (48.1%), 15 (9.4%), and 68 (42.5%) patients admitted to vaping THC, nicotine, or both, respectively. Common findings included diffuse or lower lobe GGO with subpleural (78.1%), lobular (59.4%), or peribronchovascular (PBV) sparing (40%). Septal thickening (50.6%), lymphadenopathy (63.1%), and CNs (36.3%) were common. PBV sparing was associated with younger age (P = .02). Of 160 subjects, 156 (97.5%) had one of six defined patterns. Parenchymal, airway-centered, and mixed OP patterns were seen in 89 (55.6%), 14 (8.8%), and 32 (20%) patients, respectively. Acute eosinophilic-like pneumonia (six of 160, 3.8%), DAD (nine of 160, 5.6%), pulmonary hemorrhage (six of 160, 3.8%), and atypical (four of 160, 2.5%) patterns were less common. Increased vaping frequency was associated with more severe injury (P = .008). Multivariable analysis showed a negative association between vaping for > 6 months and DAD pattern (P = .03). Two subjects (1.25%) with DAD pattern died. There was no relation between pattern and injury severity, geographic location, and state legality of recreational use of THC. INTERPRETATION: EVALI typically causes an OP pattern but exists on a spectrum of acute lung injury. Vaping habits do not correlate with CT patterns except for negative correlation between vaping > 6 months and DAD pattern. PBV sparing, not previously described in acute lung injury, is a common finding.


Assuntos
Lesão Pulmonar Aguda/diagnóstico por imagem , Hemorragia/diagnóstico por imagem , Linfadenopatia/diagnóstico por imagem , Vaping/efeitos adversos , Lesão Pulmonar Aguda/etiologia , Adolescente , Adulto , Idoso , Dronabinol/administração & dosagem , Sistemas Eletrônicos de Liberação de Nicotina , Feminino , Hemorragia/etiologia , Humanos , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Linfadenopatia/etiologia , Masculino , Pessoa de Meia-Idade , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Psicotrópicos/administração & dosagem , Tomografia Computadorizada por Raios X , Adulto Jovem
9.
Clin Nucl Med ; 46(1): 8-15, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33234926

RESUMO

PURPOSE: We assessed the prevalence of low bone mineral density (BMD) in oncologic patients undergoing F-FDG PET/CT. PATIENTS AND METHODS: This is a retrospective analysis of 100 patients who underwent F-FDG PET/CT at a single center from October 2015 till May 2016. Quantitative CT (QCT) was used to assess BMD at the lumbar spine (BMDQCT) and femoral necks (BMDCTXA). SUVmax was used to evaluate metabolic activity of the bone marrow. Risk of osteoporosis-related fractures was calculated with femoral neck BMDCTXA and the FRAX algorithm, which was compared against measurements of CT attenuation of the trabecular bone at L1 (L1HU). RESULTS: Osteoporosis and osteopenia were respectively present in 16% and 46% of patients 50 years and older. Bone marrow SUVmax was correlated with BMD at the lumbar spine (ρ = 0.36, P < 0.001). Increased age and low marrow SUVmax were associated with low BMDQCT at the lumbar spine (both P < 0.001), whereas increased age, female sex, and low marrow SUVmax were associated with low BMDCTXA at the femoral necks (P < 0.001, P < 0.001, P = 0.01, respectively). L1HU had an area under the curve of 0.95 (95% confidence interval [CI], 0.90-0.99) for detecting increased risk for osteoporosis-related fracture, with best threshold of 125.8 HU (95% CI, 115.7-144.9) yielding sensitivity of 100% (95% CI, 0.92-1.00), specificity of 0.90 (95% CI, 0.76-0.97), and accuracy of 0.91 (95% CI, 0.79-0.97). CONCLUSIONS: Low BMD is frequent in oncologic patients undergoing F-FDG PET/CT. Decreased F-FDG avidity of the bone marrow correlates with decreased BMD, validating the link between osteoporosis and bone marrow fat. L1HU could be a simple and accurate approach for detecting patients at risk for osteoporosis-related fractures using PET/CTdata.


Assuntos
Densidade Óssea , Fluordesoxiglucose F18 , Neoplasias/diagnóstico por imagem , Neoplasias/fisiopatologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto , Idoso , Feminino , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/fisiopatologia , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
10.
J Thorac Imaging ; 35(4): 219-227, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32324653

RESUMO

Routine screening CT for the identification of COVID-19 pneumonia is currently not recommended by most radiology societies. However, the number of CTs performed in persons under investigation (PUI) for COVID-19 has increased. We also anticipate that some patients will have incidentally detected findings that could be attributable to COVID-19 pneumonia, requiring radiologists to decide whether or not to mention COVID-19 specifically as a differential diagnostic possibility. We aim to provide guidance to radiologists in reporting CT findings potentially attributable to COVID-19 pneumonia, including standardized language to reduce reporting variability when addressing the possibility of COVID-19. When typical or indeterminate features of COVID-19 pneumonia are present in endemic areas as an incidental finding, we recommend contacting the referring providers to discuss the likelihood of viral infection. These incidental findings do not necessarily need to be reported as COVID-19 pneumonia. In this setting, using the term "viral pneumonia" can be a reasonable and inclusive alternative. However, if one opts to use the term "COVID-19" in the incidental setting, consider the provided standardized reporting language. In addition, practice patterns may vary, and this document is meant to serve as a guide. Consultation with clinical colleagues at each institution is suggested to establish a consensus reporting approach. The goal of this expert consensus is to help radiologists recognize findings of COVID-19 pneumonia and aid their communication with other healthcare providers, assisting management of patients during this pandemic.


Assuntos
Betacoronavirus , Infecções por Coronavirus/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pneumonia Viral/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , COVID-19 , Consenso , Humanos , América do Norte , Pandemias , Radiografia Torácica/métodos , Radiologistas , SARS-CoV-2 , Sociedades Médicas , Estados Unidos
11.
Circ Cardiovasc Imaging ; 13(2): e009678, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32066275

RESUMO

BACKGROUND: Coronary artery calcium scoring only represents a small fraction of all information available in noncontrast cardiac computed tomography (CAC-CT). We hypothesized that an automated pipeline using radiomics and machine learning could identify phenotypic information about high-risk left ventricular hypertrophy (LVH) embedded in CAC-CT. METHODS: This was a retrospective analysis of 1982 participants from the DHS (Dallas Heart Study) who underwent CAC-CT and cardiac magnetic resonance. Two hundred twenty-four participants with high-risk LVH were identified by cardiac magnetic resonance. We developed an automated adaptive atlas algorithm to segment the left ventricle on CAC-CT, extracting 107 radiomics features from the volume of interest. Four logistic regression models using different feature selection methods were built to predict high-risk LVH based on CAC-CT radiomics, sex, height, and body surface area in a random training subset of 1587 participants. RESULTS: The respective areas under the receiver operating characteristics curves for the cluster-based model, the logistic regression model after exclusion of highly correlated features, and the penalized logistic regression models using least absolute shrinkage and selection operators with minimum or one SE λ values were 0.74 (95% CI, 0.67-0.82), 0.74 (95% CI, 0.67-0.81), 0.76 (95% CI, 0.69-0.83), and 0.73 (95% CI, 0.66-0.80) for detecting high-risk LVH in a distinct validation subset of 395 participants. CONCLUSIONS: Ventricular segmentation, radiomics features extraction, and machine learning can be used in a pipeline to automatically detect high-risk phenotypes of LVH in participants undergoing CAC-CT, without the need for additional imaging or radiation exposure. Registration: URL http://www.clinicaltrials.gov. Unique identifier: NCT00344903.


Assuntos
Cálcio/metabolismo , Ventrículos do Coração/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Feminino , Ventrículos do Coração/fisiopatologia , Humanos , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Aprendizado de Máquina , Imagem Cinética por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos , Fatores de Risco
12.
Radiol Cardiothorac Imaging ; 2(2): e200152, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33778571

RESUMO

Routine screening CT for the identification of coronavirus disease 19 (COVID-19) pneumonia is currently not recommended by most radiology societies. However, the number of CT examinations performed in persons under investigation for COVID-19 has increased. We also anticipate that some patients will have incidentally detected findings that could be attributable to COVID-19 pneumonia, requiring radiologists to decide whether or not to mention COVID-19 specifically as a differential diagnostic possibility. We aim to provide guidance to radiologists in reporting CT findings potentially attributable to COVID-19 pneumonia, including standardized language to reduce reporting variability when addressing the possibility of COVID-19. When typical or indeterminate features of COVID-19 pneumonia are present in endemic areas as an incidental finding, we recommend contacting the referring providers to discuss the likelihood of viral infection. These incidental findings do not necessarily need to be reported as COVID-19 pneumonia. In this setting, using the term viral pneumonia can be a reasonable and inclusive alternative. However, if one opts to use the term COVID-19 in the incidental setting, consider the provided standardized reporting language. In addition, practice patterns may vary, and this document is meant to serve as a guide. Consultation with clinical colleagues at each institution is suggested to establish a consensus reporting approach. The goal of this expert consensus is to help radiologists recognize findings of COVID-19 pneumonia and aid their communication with other health care providers, assisting management of patients during this pandemic. Published under a CC BY 4.0 license.

13.
Radiol Cardiothorac Imaging ; 2(4): e200411, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33779624
16.
Radiographics ; 39(4): 957-976, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31199712

RESUMO

Quantitative imaging has been proposed as the next frontier in radiology as part of an effort to improve patient care through precision medicine. In 2007, the Radiological Society of North America launched the Quantitative Imaging Biomarkers Alliance (QIBA), an initiative aimed at improving the value and practicality of quantitative imaging biomarkers by reducing variability across devices, sites, patients, and time. Chest CT occupies a strategic position in this initiative because it is one of the most frequently used imaging modalities, anatomically encompassing the leading causes of mortality worldwide. To date, QIBA has worked on profiles focused on the accurate, reproducible, and meaningful use of volumetric measurements of lung lesions in chest CT. However, other quantitative methods are on the verge of translation from research grounds into clinical practice, including (a) assessment of parenchymal and airway changes in patients with chronic obstructive pulmonary disease, (b) analysis of perfusion with dual-energy CT biomarkers, and (c) opportunistic screening for coronary atherosclerosis and low bone mass by using chest CT examinations performed for other indications. The rationale for and the key facts related to the application of these quantitative imaging biomarkers in cardiothoracic chest CT are presented. ©RSNA, 2019 See discussion on this article by Buckler (pp 977-980).


Assuntos
Marcadores Fiduciais , Medicina de Precisão/métodos , Radiografia Torácica/métodos , Tomografia Computadorizada por Raios X/métodos , Antropometria/métodos , Progressão da Doença , Cardiopatias/diagnóstico por imagem , Humanos , Vértebras Lombares/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Programas de Rastreamento , Osteoporose/diagnóstico por imagem , Embolia Pulmonar/diagnóstico por imagem , Sociedades Científicas/organização & administração , Nódulo Pulmonar Solitário/diagnóstico por imagem , Pesquisa Translacional Biomédica/organização & administração
17.
J Appl Clin Med Phys ; 20(1): 308-320, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30508315

RESUMO

PURPOSE: To evaluate organ doses in routine and low-dose chest computed tomography (CT) protocols using an experimental methodology. To compare experimental results with results obtained by the National Cancer Institute dosimetry system for CT (NCICT) organ dose calculator. To address the differences on organ dose measurements using tube current modulation (TCM) and fixed tube current protocols. METHODS: An experimental approach to evaluate organ doses in pediatric and adult anthropomorphic phantoms using thermoluminescent dosimeters (TLDs) was employed in this study. Several analyses were performed in order to establish the best way to achieve the main results in this investigation. The protocols used in this study were selected after an analysis of patient data collected from the Institute of Radiology of the School of Medicine of the University of São Paulo (InRad). The image quality was evaluated by a radiologist from this institution. Six chest adult protocols and four chest pediatric protocols were evaluated. Lung doses were evaluated for the adult phantom and lung and thyroid doses were evaluated for the pediatric phantom. The irradiations were performed using both a GE and a Philips CT scanner. Finally, organ doses measured with dosimeters were compared with Monte Carlo simulations performed with NCICT. RESULTS: After analyzing the data collected from all CT examinations performed during a period of 3 yr, the authors identified that adult and pediatric chest CT are among the most applied protocol in patients in that clinical institution, demonstrating the relevance on evaluating organ doses due to these examinations. With regards to the scan parameters adopted, the authors identified that using 80 kV instead of 120 kV for a pediatric chest routine CT, with TCM in both situations, can lead up to a 28.7% decrease on the absorbed dose. Moreover, in comparison to the standard adult protocol, which is performed with fixed mAs, TCM, and ultra low-dose protocols resulted in dose reductions of up to 35.0% and 90.0%, respectively. Finally, the percent differences found between experimental and Monte Carlo simulated organ doses were within a 20% interval. CONCLUSIONS: The results obtained in this study measured the impact on the absorbed dose in routine chest CT by changing several scan parameters while the image quality could be potentially preserved.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Imagens de Fantasmas , Dosímetros de Radiação , Radiografia Torácica/métodos , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodos , Adulto , Criança , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
18.
Radiographics ; 38(7): 2134-2149, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30422775

RESUMO

Lung cancer is the leading cause of cancer-related mortality in the United States, and accurate staging plays a vital role in determining prognosis and treatment. The recently revised eighth edition of the TNM staging system for lung cancer defines new T and M descriptors and updates stage groupings on the basis of substantial differences in survival. There are new T descriptors that are based on the findings at histopathologic examination, and T descriptors are reassigned on the basis of tumor size and extent. No changes were made to the N descriptors in the eighth edition of the TNM staging of lung cancer, because the four N categories that are based on the location of the diseased nodes can be used to consistently predict prognosis. The eighth edition includes a new M1b descriptor for patients with a single extrathoracic metastatic lesion in a single organ (M1b), because they have better survival and different treatment options, compared with those with multiple extrathoracic lesions (M1c). Examination with fluorine 18 fluorodeoxyglucose (FDG) PET/CT is the standard of care and is an integral part of the clinical staging of patients with lung cancer. To provide the treating physicians with accurate staging information, radiologists and nuclear medicine physicians should be aware of the updated classification system and should be cognizant of the site-specific strengths and limitations of FDG PET/CT. In this article, the eighth edition of the TNM staging system is reviewed, as well as the role of FDG PET/CT in the staging of non-small cell lung carcinoma. ©RSNA, 2018.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Fluordesoxiglucose F18 , Humanos , Estadiamento de Neoplasias
19.
Anesthesiology ; 129(6): 1070-1081, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30260897

RESUMO

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Intraoperative lung-protective ventilation has been recommended to reduce postoperative pulmonary complications after abdominal surgery. Although the protective role of a more physiologic tidal volume has been established, the added protection afforded by positive end-expiratory pressure (PEEP) remains uncertain. The authors hypothesized that a low fixed PEEP might not fit all patients and that an individually titrated PEEP during anesthesia might improve lung function during and after surgery. METHODS: Forty patients were studied in the operating room (20 laparoscopic and 20 open-abdominal). They underwent elective abdominal surgery and were randomized to institutional PEEP (4 cm H2O) or electrical impedance tomography-guided PEEP (applied after recruitment maneuvers and targeted at minimizing lung collapse and hyperdistension, simultaneously). Patients were extubated without changing selected PEEP or fractional inspired oxygen tension while under anesthesia and submitted to chest computed tomography after extubation. Our primary goal was to individually identify the electrical impedance tomography-guided PEEP value producing the best compromise of lung collapse and hyperdistention. RESULTS: Electrical impedance tomography-guided PEEP varied markedly across individuals (median, 12 cm H2O; range, 6 to 16 cm H2O; 95% CI, 10-14). Compared with PEEP of 4 cm H2O, patients randomized to the electrical impedance tomography-guided strategy had less postoperative atelectasis (6.2 ± 4.1 vs. 10.8 ± 7.1% of lung tissue mass; P = 0.017) and lower intraoperative driving pressures (mean values during surgery of 8.0 ± 1.7 vs. 11.6 ± 3.8 cm H2O; P < 0.001). The electrical impedance tomography-guided PEEP arm had higher intraoperative oxygenation (435 ± 62 vs. 266 ± 76 mmHg for laparoscopic group; P < 0.001), while presenting equivalent hemodynamics (mean arterial pressure during surgery of 80 ± 14 vs. 78 ± 15 mmHg; P = 0.821). CONCLUSIONS: PEEP requirements vary widely among patients receiving protective tidal volumes during anesthesia for abdominal surgery. Individualized PEEP settings could reduce postoperative atelectasis (measured by computed tomography) while improving intraoperative oxygenation and driving pressures, causing minimum side effects.


Assuntos
Cuidados Intraoperatórios/métodos , Respiração com Pressão Positiva/métodos , Complicações Pós-Operatórias/prevenção & controle , Medicina de Precisão/métodos , Atelectasia Pulmonar/prevenção & controle , Respiração Artificial/métodos , Abdome/cirurgia , Adulto , Idoso , Anestesia Intravenosa , Procedimentos Cirúrgicos Eletivos , Feminino , Humanos , Laparoscopia , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio , Respiração com Pressão Positiva/efeitos adversos , Atelectasia Pulmonar/epidemiologia , Atelectasia Pulmonar/etiologia , Respiração Artificial/efeitos adversos , Volume de Ventilação Pulmonar , Tomografia
20.
Urol Clin North Am ; 45(3): 311-330, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30031457

RESUMO

The increase in serendipitous detection of solid renal masses on imaging has not resulted in a reduction in mortality from renal cell carcinoma. Consequently, efforts for improved lesion characterization have been pursued and incorporated into management algorithms for distinguishing clinically significant tumors from those with favorable histology or benign conditions. Although diagnostic imaging strategies have evolved for optimized lesion detection, distinction between benign tumors and both indolent and aggressive malignant neoplasms remain an important diagnostic challenge. Recent advances in cross-sectional imaging have expanded the role of these tests in the noninvasive characterization of solid renal tumors.


Assuntos
Neoplasias Renais/diagnóstico por imagem , Humanos , Biópsia Guiada por Imagem , Neoplasias Renais/patologia , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...